Before we begin...

Sarah Allwood-Spiers, September 2019

Before we begin

Terminology can be confusing: too many "gradients"

- Some MRI safety conditions may refer to "maximum spatial gradient" or a "static magnetic field gradient".
- This is not referring to the time-varying field created by the gradient coils: nothing to do with the imaging gradients.

Imaging gradients are

- Very small changes in field strength (e.g. 30mT/m)
- Time varying (very rapidly)
- Affect things in the bore of the scanner
- They are a completely different hazard (PNS, acoustic noise, induced currents etc).

Before we begin

Terminology can be confusing: too many "gradients"

- Some MRI safety conditions may refer to "maximum spatial gradient" or a "static magnetic field gradient".
- This is not referring to the time-varying field created by the gradient coils: nothing to do with the imaging gradients.

Imaging gradients are

- Very sma
- Time var
- Affect thi
- They are noise, ind

Spatial Gradient

Sarah Allwood-Spiers

MR Physics, Dept of Clinical Physics and Bioengineering, NHSGGC.

September 2019

sarah.allwood-spiers@nhs.net

Delivering better health

www.nhsggc.org.uk

Magnetic field strength

- A 1.5 T scanner has a field strength of 1.5 Tesla at isocentre and inside the bore of the scanner.
- This drops quite rapidly with distance at the entrance to the bore of the scanner.

Example contour plot of magnetic field strength (in mT) around a 1.5T scanner.

Sarah Allwood-Spiers, September 2019

Illustration of magnetic field strength in a 1.5T scanner. Taken from MagnetVision app.

Sarah Allwood-Spiers, September 2019

Translational force

- The translational force on an object depends on
 - The volume V and magnetic susceptibility χ of the object.
 - the field strength B
 - the spatial rate of change dB/dz of the magnetic field: spatial gradient.

Spatial Gradient

- Also known as "static field gradient".
- Rate of change of magnetic field with distance
- Spatial gradient may be stated in units of T/m, e.g. 7.4 T/m, or G/cm, e.g. 740 G/cm.
- 100 G/cm is 1 T/m.
- Typical size: 0-20 T/m. Does not vary with time.
- Maximum close to bore entrance

Example Implant Conditions

- For a device that is "MR conditional", the conditions may include a requirement on the maximum spatial gradient.
- E.g. Maximum spatial gradient field of 720 G/cm.
 - To be compliant with these conditions, the device should not go into a region with a higher spatial gradient than this value.

Non-clinical testing has demonstrated that the Carpentier-Edwards PERIMOUNT Magna Mitral Ease pericardial bioprosthesis is MR Conditional. A patient with the PERIMOUNT Magna Mitral Ease bioprosthesis can be scanned safely immediately after placement of this implant under the following conditions:

- Static magnetic field of 3 tesla or less.
- Maximum spatial gradient field of 720 gauss/cm.
- Maximum MR system-reported whole-body-averaged specific absorption rate (SAR) of 3W/kg for 15 minutes of scanning.

Scanner information

- Scanner manual may tell you the maximum spatial gradient, or peak static field gradient, for the system:
 - E.g. MSG 1300G/cm.
 - Not very useful.

• Where is it 1300G/cm? Will the patient/implant pass through this region?

Example Spatial Gradient map

Contour map of spatial gradient for an example 1.5T magnet

Example Spatial Gradient Map for GE Discovery MR750w (3T, 70cm bore)

Taken from "Understanding Spatial Gradient", GE powerpoint, 201412

Example Spatial Gradient Map for GE Discovery MR750w (3T, 70cm bore)

Example Spatial Gradient Map for GE Discovery MR750w (3T, 70cm bore)

Example Spatial Gradient Map for GE Discovery MR750w (3T, 70cm bore)

Example Spatial Gradient Map for GE Discovery MR750w (3T, 70cm bore)

Should you scan the patient?

What do you think?

- No!!! The scanner's maximum spatial gradient is 1300G/cm. The condition is not met. This patient must never get an MRI.
- Probably: What spatial gradient will the implant pass through? To answer this we may need to know:
 - Where in the body is the implant?
 - How large is the patient?

Should you scan the patient?

What do you think?

- No!!! The scanner's maximum spatial gradient is 1300G/cm. The condition is not met. This patient must never get an MRI.
- Probably: What spatial gradient will the implant pass through? To answer this we may need to know:
 - Where in the body is the implant?
 - How large is the patient?

Variations with Scanner

- Spatial gradient contour maps will have different values for different scanners. In general, a 3T scanner reaches higher values than a 1.5T scanner.
- A wide bore scanner will have higher values than a 60cm scanner, but those higher values might be quite far away from the patient.
- When assessing whether MR conditions on spatial gradient are met for a particular implant, we have to decide whether the region the implant passes through has a higher spatial gradient than the MR conditions allow.

Conclusion

- The static field gradient or "spatial gradient field" describes how quickly the magnetic field changes with distance.
- It is important because the attractive force on ferromagnetic objects is determined by this static field gradient.
- It strongest close to the opening of the scanner, next to the bore walls.
- If interpreted correctly, the maximum spatial gradient in the MRI conditions for an implant is rarely the limiting factor.
- If you think an implant doesn't meet the conditions for spatial gradient contact MR physics.